Kriging vs Geographically Weighted Regression for analysing farm experiments

Shih Ching Fu

- Precision agriculture
- Large-scale on-farm strip experiments
- Modelling spatial heterogeneity
- Comparison Results
- Recommendations
- Q & A

Precision Agriculture

- Response of crops to inputs is likely to vary spatially within a field.
- Targeted application of chemicals is more efficient and sustainable.

Aerial map of wheat farm in Kojonup. Source: Google Maps.

Precision Agriculture

- Response of crops to inputs is likely to vary spatially within a field.
- Targeted application of chemicals is more efficient and sustainable.

1: Where should inputs be applied for greatest effect?

Treatment effect estimation

2: What is the expected result? Yield prediction

Aerial map of wheat farm in Kojonup. Source: Google Maps.

On-farm strip experiments

• Understand the effect of treatments β_1 , e.g., fertiliser.

yield = $\beta_0 + \beta_1 \times \text{treatmentRate} + \varepsilon$

• At a scale that is meaningful and practical.

Kojonup Winter Wheat Trial. Source: SAGI-West, GRDC.

Spatial Heterogeneity

• Non-stationarity

The response of crops, even without treatment, varies with location.

Auto-correlation

The response of crops in one location is related to the response at nearby locations.

Variogram

Regression Kriging

 Estimate the value at a target location by the weighted average of the known observations

$$\widehat{z}(\mathbf{s_0}) = \sum_{k=1}^p \widehat{\beta}_k \cdot q_k(\mathbf{s_0}) + \sum_{i=1}^n \lambda_i \cdot e(\mathbf{s_i})$$

 $\hat{z}(s_0)$ is the interpolated value at target location s_0 $e(s_1), \dots, e(s_n)$ are residuals at locations s_i $q_1(s_0), \dots, q_p(s_n)$ are explanatory variables at s_i $\hat{\beta}_1, \dots, \hat{\beta}_p$ are regression coefficients $\lambda_1, \dots, \lambda_n$ are kriging weights

 $\hat{\beta}_k$ coefficients are <u>not</u> spatially varying

Geographically Weighted Regression (GWR)

• Fit a regression model using data from within a window of the target location.

$$\hat{z}(\mathbf{s}_i) = \hat{\beta}_0(\mathbf{s}_i) + \sum_{k=1}^p \hat{\beta}_k(\mathbf{s}_i) \cdot q_k(\mathbf{s}_i) + \varepsilon_i$$

 $\hat{z}(s_i)$ is the fitted value at location s_i $e_i \sim N(0, \sigma^2)$ are residuals at locations s_i $q_1(s_0), \dots, q_p(s_n)$ are explanatory variables at s_i $\hat{\beta}_1(s_i), \dots, \hat{\beta}_p(s_i)$ are regression coefficients

GWR+Kriging

GWR followed by (Simple) Kriging:

- 1. Fit GWR model using auxiliary variables
 - Yield prediction, z(.)
 - Treatment effect size, $\hat{\beta}_1$
- 2. Apply SK to the yield residuals from GWR
- 3. Add newly interpolated yield residuals back into the original GWR yield prediction
- 4. Obtain new yield residuals

Las Rosas Cornfield Data

Yield Prediction Experiment

- 1. Randomly mask out locations
- 2. Predict missing values
 - Simple kriging
 - Regression kriging
 - GWR
 - GWR+K
- 3. Compare with known yields
 - MAE
 - RMSE
- 4. Repeat 40 times

Yield Prediction Error

- SK, RK, and GWR+K have similar yield prediction accuracies
- GWR is distinctly worse
- GWR+K may have marginally better precision

Treatment Effect Estimation: Synthetic Data

yield =
$$\beta_0 + \beta_1 \times \text{treatmentRate}$$

15

Autocorrelated Noise

Random error term

yield =
$$\beta_0 + \beta_1 \times \text{treatmentRate} + \varepsilon$$

16

Treatment Effects Estimation Experiment

- 1. Use entire dataset
- 2. Fit regression model
 - Regression Kriging
 - GWR
- 3. Compare with known coefficients
 - $\beta_0 = 5$
 - $\beta_1 = 0.0, 0.025, 0.05$

Ground truth β_0

Regression Kriging

- GWR handles non-stationarity.
- GWR estimates are biased toward the average.
- Zones are unknown in practice.

- RK returns a global estimate.
- GWR affected by autocorrelated noise.
- Edge artefacts in GWR result.

Recommendations

- Regression Kriging is sufficient for yield prediction.
- GWR+K provides both yield and treatment estimates in the face of autocorrelation and non-stationarity.

Auto-correlation

		Present	Not Present
Non-stationarity	Present	GWR+K	GWR
	Not Present	RK	Either

GWR Kernel

- Shape
 - Gaussian, Exponential, Bisquare, Tricube, Boxcar.
- Bandwidth
 - Consider strip dimensions

Global b=1000

0

Exponential b=1000

1000

2000

4.0

0.2

0

0.6

4.0

-2000

-1000

Gaussian b=1000

0

Bisguare b=1000

1000

2000

w 0.6 0.8

0.4

2

0

0.6

4.0

-2000

-1000

Figure: Gollini, I., Lu, B., Charlton, M., Brunsdon, C., & Harris, P. (2015). GWmodel: An R Package for Exploring Spatial Heterogeneity Using Geographically Weighted Models. *Journal of Statistical Software*, *63*(17), 1 - 50. doi: <u>http://dx.doi.org/10.18637/jss.v063.i17</u>

Effect of Bandwidth

True β_1 – Left – Centre – Right

As (boxcar) bandwidth size is increased:

- 1. Precision of treatment estimates improves.
- 2. Estimates are pulled towards global average.

Conclusion

- Precision agriculture promotes efficiency and sustainability by helping farmers target their interventions.
- On-farm strip experiments are conducted at large practical scales where we cannot ignore spatial heterogeneity.
- Spatial heterogeneity is mostly explained by nonstationarity and autocorrelation.
- A GWR+K approach produces good yield predictions and treatment effect estimates in the face of this heterogeneity.
- GWR kernel bandwidth must be chosen with care.

Thank you

