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Precision Agriculture
• Response of crops to inputs is likely to vary spatially within a field.

• Targeted application of chemicals is more efficient and sustainable.
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1: Where should inputs be 
applied for greatest effect?

Treatment effect 
estimation

2: What is the expected 
result?

Yield prediction

300m

Aerial map of wheat farm in Kojonup. Source: Google Maps.



On-farm strip experiments
• Understand the effect of treatments 𝛽1, e.g., fertiliser.

• At a scale that is meaningful and practical.

Kojonup Winter Wheat Trial. Source: SAGI-West, GRDC.
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yield = 𝛽0 + 𝛽1 × treatmentRate + 𝜀



Spatial Heterogeneity

• Non-stationarity
The response of crops, even without treatment, varies with 
location.

• Auto-correlation
The response of crops in one location is related to the 
response at nearby locations.
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Variogram
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Sill = 0.24

Range = 775

Nugget = 0.06



Regression Kriging
• Estimate the value at a target location by the weighted average of 

the known observations
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Ƹ𝑧 𝑠0 is the interpolated value at target location 𝑠0
𝑒 𝑠1 , ⋯ , 𝑒 𝑠𝑛 are residuals at locations 𝑠𝑖
𝑞1 𝑠0 , ⋯ , 𝑞𝑝 𝑠𝑛 are explanatory variables at 𝑠𝑖
መ𝛽1, ⋯ , መ𝛽𝑝 are regression coefficients

𝜆1, ⋯ , 𝜆𝑛 are kriging weights
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Geographically Weighted Regression (GWR)
• Fit a regression model using data from within a window of the 

target location.
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Ƹ𝑧 𝑠𝑖 is the fitted value at location 𝑠𝑖
𝑒𝑖 ~ 𝑁 0, 𝜎2 are residuals at locations 𝑠𝑖
𝑞1 𝑠0 , ⋯ , 𝑞𝑝 𝑠𝑛 are explanatory variables at 𝑠𝑖
መ𝛽1 𝑠𝑖 , ⋯ , መ𝛽𝑝 𝑠𝑖 are regression coefficients

መ𝛽𝑘 coefficients are spatially varying✓
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GWR+Kriging

GWR followed by (Simple) Kriging:

1. Fit GWR model using auxiliary variables
• Yield prediction, 𝑧 .

• Treatment effect size, መ𝛽1

2. Apply SK to the yield residuals from GWR

3. Add newly interpolated yield residuals back into the 
original GWR yield prediction

4. Obtain new yield residuals
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Las Rosas Cornfield Data
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Yield Prediction Experiment

1. Randomly mask out locations

2. Predict missing values
• Simple kriging

• Regression kriging

• GWR

• GWR+K

3. Compare with known yields
• MAE

• RMSE

4. Repeat 40 times
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Yield Prediction Error
• SK, RK, and GWR+K have similar yield prediction accuracies

• GWR is distinctly worse

• GWR+K may have marginally better precision
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Mean Absolute Error (MAE) 

SK RK GWR GWR+K



Treatment Effect Estimation: Synthetic Data
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yield = 𝛽0 + 𝛽1 × treatmentRate + 𝜀



Autocorrelated Noise
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yield = 𝛽0 + 𝛽1 × treatmentRate + 𝜀



Treatment Effects Estimation Experiment
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1. Use entire dataset

2. Fit regression model
• Regression Kriging

• GWR

3. Compare with known 
coefficients
• 𝛽0 = 5
• 𝛽1 = 0.0, 0.025, 0.05

5.0

0.05 0.025 0.0



Estimated 𝛽1

• GWR handles non-stationarity.

• GWR estimates are biased 
toward the average.

• Zones are unknown in practice.
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መ𝛽1 = 0.025



Estimated 𝛽0

• RK returns a global estimate.

• GWR affected by 
autocorrelated noise.

• Edge artefacts in GWR result.
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መ𝛽0 = 4.97



Recommendations
• Regression Kriging is sufficient for yield prediction.

• GWR+K provides both yield and treatment estimates in the 
face of autocorrelation and non-stationarity.
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GWR Kernel

• Shape
• Gaussian, Exponential, 

Bisquare, Tricube, Boxcar.
• Bandwidth

• Consider strip dimensions
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Figure: Gollini, I., Lu, B., Charlton, M., Brunsdon, C., & Harris, P. (2015). GWmodel: An R Package for Exploring Spatial Heterogeneity 
Using Geographically Weighted Models. Journal of Statistical Software, 63(17), 1 - 50. doi: http://dx.doi.org/10.18637/jss.v063.i17

http://dx.doi.org/10.18637/jss.v063.i17


Effect of Bandwidth

As (boxcar) bandwidth 
size is increased:

1. Precision of treatment 
estimates improves.

2. Estimates are pulled 
towards global 
average.
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Conclusion
• Precision agriculture promotes efficiency and sustainability 

by helping farmers target their interventions.

• On-farm strip experiments are conducted at large practical 
scales where we cannot ignore spatial heterogeneity.

• Spatial heterogeneity is mostly explained by non-
stationarity and autocorrelation.

• A GWR+K approach produces good yield predictions and 
treatment effect estimates in the face of this heterogeneity.

• GWR kernel bandwidth must be chosen with care.
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Thank you
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