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Curtin to Imperial ≈ 14 500 km, 18h flight time
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Western Australia ≈ 2.6M km2
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Curtin Institute of Radio Astronomy (CIRA)

• Formed in 2017 (1 of 2 ICRAR nodes)

• 27 academic, 28 technical, 36 HDRs

• Science
• Accretion, Jets, and Slow Transients

• Epoch of Reionisation science

• Extragalactic Radio Astronomy

• Pulsars and Transients

• Engineering

• Murchison Widefield Array (MWA)

• Australian SKA Pathfinder (ASKAP)
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A transient is an astrophysical phenomenon whose brightness changes 
“meaningfully” over observable time. 

• Supernovae 
• Variable stars, e.g., pulsating,

eclipsing binaries.
• Gamma-ray bursts (GRBs)
• Fast radio bursts (FRBs)
• Transiting planets
• Active galactic nuclei (AGN)
• Accreting blackholes
• and lots more…
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Twinkle twinkle…

Artist’s impression of the Cygnus X-1 system. Credit: ICRAR
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Light Curves

Light curves are time series describing the brightness of a source over time.

• The shape of a light curve can reveal the type of object or event. 

• Variability in brightness can reveal information about the processes 

underlying the observed phenomenon.
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Inconsistent Data

• Different cadences

• Sparse observations

• Irregular sampling

• Varying noise levels
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ThunderKAT Survey

• The HUNt for Dynamic and Explosive Radio 

transients with MeerKAT

• Field of view of ≈ 1 square degree

• 6,394 radio light curves over 10 fields

• Flux density measurements + standard errors
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Variability Statistics: 𝜂𝜈 and 𝑉𝜈 

𝜂𝜈 =
1

𝑁


Obs. − Wt. Mean

Std. Error

2

∼ 𝜒𝑁−1
2

𝑉𝜈 =
Standard Deviation

Mean
 

As 𝜂𝜈 → ∞ and 𝑉𝜈 → ∞

Source is likely transient

(Data courtesy of Andersson et al., 2023)
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Variability Statistics: 𝜂𝜈 and 𝑉𝜈 

𝜂𝜈 = 22427.6, 𝑉𝜈 = 1.86  

GX 339-4
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Characterising Light Curves

• Many parameters

• High discriminatory power

• Overfitting

• Fewer parameters

• Scales easily

• High information loss

Oversimplified Overspecified

Model light curves as a Gaussian Process (GP)
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Astronomical & Statistical Objectives

1. Find the missing stellar mass black holes
• Estimated population is > 105 but only found < 100.

• New large-scale astronomical surveys, e.g., LSST, SKA.

• Need techniques to analyse these large datasets.

2. Advance the use of GPs for time-series astronomy
• Statistically justified and astrophysically meaningful 

representation of transients.

• Handle sparse, unevenly sampled data.

• Go beyond interpolation and point estimates.
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GPs in Astronomy
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Multivariate Normal 𝐘 ~ MVN(𝟎, 𝚺𝑛×𝑛)

Σ =
1 0
0 1

Σ =
1 0.8

0.8 1

𝒀 is a vector of 𝑛 Gaussian random variables.

𝑌1

⋮
𝑌𝑛

= 𝒀 ~ 𝑀𝑉𝑁 𝝁, 𝜮𝑛×𝑛 ,     𝜮𝑛×𝑛 =
Σ11 ⋯ Σ1𝑛

⋮ ⋱ ⋮
Σ𝑛1 ⋯ Σ𝑛𝑛

where 𝝁 = (𝜇1, ⋯ , 𝜇𝑛) and 𝜮 is a 𝑛 × 𝑛 covariance matrix.

• Symmetric, positive semi-definite matrix.

• Linear combinations of covariance 
matrices are also valid covariance 
matrices.
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Gaussian Processes (GPs)

Extend multivariate Gaussian to ‘infinite’ dimensions.

• Mean function, 𝜇(𝑡)

• Covariance or kernel function, 𝜿(𝒕, 𝒕)

𝑌1

𝑌2

⋮
= 𝒀 ~ 𝐺𝑃(𝜇(𝑡), 𝜮)

where 𝝁 = 𝜇(𝑡𝑖) and 𝛴𝑖𝑗 = 𝜿(𝒕𝒊, 𝒕𝒋), for 𝑖, 𝑗 = 1, 2, …

Rather than specifying a fixed covariance matrix with fixed dimensions, 
compute covariances using the kernel function.
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Squared Exponential Kernel

𝑘 𝜏; 𝜎, ℓ = 𝜎2 exp −
1

2

𝜏

ℓ

2

𝜎, ℓ > 0

𝜏 = 𝑡𝑟 − 𝑡𝑐

• As distance (in time) increases  

the covariance decreases 

• Stationary time-series
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Matern 3/2 Kernel

𝜎, ℓ > 0

𝜏 = 𝑡𝑟 − 𝑡𝑐

• Decays faster than SE kernel

• Converges on SE as order, 

i.e., 3/2, 5/2, etc, increases

• More jagged curves

𝑘 𝜏; 𝜎, ℓ = 𝜎2 1 + 3
𝜏

ℓ
exp − 3

𝜏

ℓ



1919

Periodic Kernel

𝑘 𝜏; 𝜎, ℓ = 𝜎2exp −
2

ℓ2
sin2 𝜋

𝜏

𝑇

𝜎, ℓ, 𝑇 > 0

𝜏 = 𝑡𝑟 − 𝑡𝑐

• Additional hyperparameter

• Covariance might never 

decay to zero
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Squared Exponential Kernel 𝜅 𝜏; 𝜎, ℓ = 𝜎2 exp −
1

2ℓ2
𝜏2



2121

Matern 3/2 Kernel
𝜅 𝜏; 𝜎, ℓ = 𝜎2 1 + 3

𝜏

ℓ
exp − 3

𝜏

ℓ



2222

Periodic Kernel 𝜅 𝜏; 𝜎, ℓ = 𝜎2 exp −
2

ℓ2
sin2 𝜋

𝜏

𝑇
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Modelling Workflow

Data

Characterisation 
of Light Curve

Power Spectral 
Density (PSD)

Likelihood

GP Prior

GP 
Posterior

Prediction

Hyperparameter 
priors

Kernel Function
Mean 

Function

Hyperparameter 
posteriors

e.g., flux density, 
stellar magnitudes.

e.g., Gaussian, 
Poisson, Negative 
Binomial.

𝜇(𝑡) 𝑘(𝜏; 𝜽)

𝑝(𝜽)

𝑝 𝜽 𝒚

𝑝 𝒚∗ 𝒚

𝑝 𝜃 𝑦 =
𝑝 𝑦 𝜃 × 𝑝(𝜃)

𝑝(𝑦)
posterior

likelihood prior

marginal likelihood

Bayes’ Theorem
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Bayesian Hierarchical Model

= 𝜅1 𝜏; 𝜎𝑆𝐸 , ℓ𝑆𝐸 + 𝜅2 𝜏; 𝜎𝑀32, ℓ𝑀32 + 𝜅3 𝜏; 𝜎𝑃 , ℓ𝑃, 𝑇
Periodic

Y ~ MVN 𝐟, ො𝒆2

𝐟 ~ GP 𝟎, 𝑲𝑁×𝑁

[𝑲]𝑟𝑐= 𝜅 𝑡𝑟 , 𝑡𝑐 𝜽

𝑟, 𝑐 = 1, … , 𝑁.

Matern 3/2Squared Exponential

Covariance
Kernel

𝜽 = 𝜎𝑆𝐸 , ℓ𝑆𝐸 , 𝜎𝑀32, ℓ𝑀32, 𝜎𝑃, ℓ𝑃, 𝑇

Data Model

Process Model
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Hyperparameter Model

𝜎𝑆𝐸 , 𝜎𝑀32, 𝜎𝑃 ~ 𝑁+ 0, 1

ℓ𝑆𝐸 , ℓ𝑀32, ℓ𝑃 ~ InverseGamma 𝛼 = 3, 𝛽 =
1

2
range(𝑡)

𝑇 ~ Uniform 2 × min(Δ𝑡),
1

4
range(𝑡)

ℓ𝑆𝐸 > ℓ𝑀32 > 0

min ∆𝑡 < ℓ.

Constrain length scale to be 
at least as wide as the 

narrowest gap in light curve

SE kernel to fit 
longer term trends 
than M32 kernel

Observe at least four 
cycles of any periodicity

Standardised flux 
densities

No more than half 
of total duration

Periods bounded by 
Nyquist rate

Minimal density 
near short scales
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Half-Normal Distribution

𝜎 ~ 𝑁+ 0,1

• Truncated and rescaled 

standard Normal 

distribution.

• Use median = 0.675 as 

a naive threshold.

0.675
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Modelling Workflow

Data

Characterisation 
of Light Curve

Power Spectral 
Density (PSD)

Likelihood

GP Prior

GP 
Posterior

Prediction

Hyperparameter 
priors

Kernel Function
Mean 

Function

Hyperparameter 
posteriors

Gaussian

𝑘(𝜏; 𝜽)

𝑝(𝜽)

𝑝 𝜽 𝒚

𝑝 𝒚∗ 𝒚

Flux density,
Std. error

𝜇(𝑡) = 0

𝜎 ~ HalfNormal()

ℓ ~ InvGamma()

𝑇 ~ Uniform()

Squared Exponential
Matern 3/2
Periodic 𝜽 =

𝜎𝑆𝐸

ℓ𝑆𝐸

𝜎𝑀32

ℓ𝑀32

𝜎𝑃

ℓ𝑃

𝑇
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Tools

• Implemented in Python1 (v3.11) and PyMC2 (v3.16.2)

• Accessible to astronomers

• Probabilistic programming framework

• Well-maintained open-source software

• Repeated analyses in R3 (v4.3.1) and Stan4 (v2.34) 

• Also considered: celerite25, george6.

https://www.python.org/
https://www.pymc.io/
https://cran.r-project.org/
https://mc-stan.org/
https://celerite2.readthedocs.io/en/latest/
https://george.readthedocs.io/en/latest/
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PyMC generated DAG

Marginal GP implementation
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Example

N = 33, Duration = 215 days, Field = J1848G

𝜎SE = 0.39

𝝈M32 = 𝟏. 𝟐𝟔

𝜎P = 0.50
ℓSE = 50.0

ℓM32 = 11.9

ℓP = 46.7
𝑇 = 41.1

𝜂𝜈 = 2.91
𝑉𝜈 = 0.12
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Posterior Predictive Samples

𝜎SE = 0.39

𝝈M32 = 𝟏. 𝟐𝟔

𝜎P = 0.50
ℓSE = 50.0

ℓM32 = 11.9

ℓP = 46.7
𝑇 = 41.1

𝜂𝜈 = 2.91
𝑉𝜈 = 0.12

N = 33, Duration = 215 days, Field = J1848G

Posterior 
Medians
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Power Spectral Density (PSD)

• Compute PSD of each posterior predictive sample
• Typical correlated (red) noise spectrum
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Additive Components (Posterior Predictive)
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Additive Components (PSD)
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Amplitude Hyperparameter
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Explore the hyperparameter space
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Comparison with 𝑉𝜈 vs 𝜂𝜈
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Interpreting Amplitude as Transcience

• Transience seems to 

manifest as large values 

in amplitude, 𝜎.

• Previously identified 

transient candidates all 

seem to lie the upper 

right of this parameter 

space. 
Figure: Fu et al. (in prep.)Data: Andersson et al. (2023)
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Permutation Test

• Destroys any auto-correlation structures
• “null” distribution of joint posterior means marginalised over 

other hyperparameters
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XRB: GX 339-4

• Known X-ray binary
• Very bright peaks
• Transient source
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Pulsar: PSR J1703−4851

• Known pulsar
• Very high frequency 

variability
• Long term “variable”
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Summary so far

• Developed models and code suitable for fitting univariate GPs to the 

light curves of a large radio survey, i.e., ThunderKAT.

• GP amplitude hyperparameters are a better descriptor of variability 

than more commonly used statistics.

• GPs can be used to perform inference as well as interpolation in 

time-domain astronomy.

GPs: not only a means to an end but an end to only means.
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Upcoming
Astronomy Statistics

Modelling radio light 
curves from ThunderKAT

Identifying transient and variable 
candidates in commensal radio 
surveys in the SKA era.

• Univariate Gaussian Processes
• Gaussian likelihood
• Sparse, unevenly sampled

Guidance for GPs in time-
domain astronomy

Mean function, covariance kernel, and hyperprior choice for 
inference not just curve smoothing in astronomy.

Modelling LSST light 
curves

Identifying transient candidates 
in multi-wavelength light curves 
across the optical band.

• Multi-output Gaussian 
Process regression

• High noise and nuisance 
artefacts

Modelling light curves 
from large X-ray surveys 
(eROSITA, Swift)

Characterisation of black hole 
accretion through light curve 
modelling.

• Non-Gaussian likelihood
• Non-Gaussian noise
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Multi-band Optical Light Curves

• LSST light curves may 

have measurements in 

multiple bands.

• Expect each band to be 

correlated.

• Sparsity and sampling 

will differ between 

bands.

• Multi-output GPs with 

different noise model.
(Credit: S. Sett, 2024)
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Twinkle twinkle little star…

Raw Data 
Processing
Raw Data 

Processing
IdentifyIdentify ClassifyClassify

Exotic 
phenomena

Large-scale 
survey

Black holes, 
supernova, 
eclipsing 
binary, GRB, 
FRB, AGN, 
etc, …

Transient
candidates

103 to 106 

light curves

… a Gaussian Process is what you are!
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