

International Centre for Radio Astronomy Research Gaussian process models for identifying variables and transients in large astronomical surveys

Shih Ching Fu

Co-supervisors:

Dr Arash Bahramian, Dr Aloke Phatak

Associate Supervisors:

Dr James Miller-Jones, Dr Suman Rakshit







# ICRAR

#### Curtin to Imperial ≈ 14 500 km, 18h flight time









#### Western Australia ≈ 2.6M km<sup>2</sup>















## Curtin Institute of Radio Astronomy (CIRA)

- Formed in 2017 (1 of 2 ICRAR nodes)
- 27 academic, 28 technical, 36 HDRs
- Science
  - Accretion, Jets, and Slow Transients
  - Epoch of Reionisation science
  - Extragalactic Radio Astronomy
  - Pulsars and Transients
- Engineering
- Murchison Widefield Array (MWA)
- Australian SKA Pathfinder (ASKAP)





#### Twinkle twinkle...

A *transient* is an astrophysical phenomenon whose brightness changes "meaningfully" over observable time.

- Supernovae
- Variable stars, e.g., pulsating, eclipsing binaries.
- Gamma-ray bursts (GRBs)
- Fast radio bursts (FRBs)
- Transiting planets
- Active galactic nuclei (AGN)
- Accreting blackholes
- and lots more...



Artist's impression of the Cygnus X-1 system. Credit: ICRAR



*Light curves* are time series describing the brightness of a source over time.

- The shape of a light curve can reveal the type of object or event.
- Variability in brightness can reveal information about the processes underlying the observed phenomenon.





#### **Inconsistent** Data

- Different cadences
- Sparse observations
- Irregular sampling
- Varying noise levels







#### ThunderKAT Survey

- The HUNt for Dynamic and Explosive Radio transients with MeerKAT
- Field of view of ≈ 1 square degree
- 6,394 radio light curves over 10 fields
- Flux density measurements + standard errors



MeerKAT Radio Telescope (Credit: SARAO)













 $(\eta_{\nu} = 22427.6, V_{\nu} = 1.86)$ 



## **Astronomical & Statistical Objectives**

- 1. Find the missing stellar mass black holes
  - Estimated population is  $> 10^5$  but only found < 100.
  - New large-scale astronomical surveys, e.g., LSST, SKA.
  - Need techniques to analyse these large datasets.
- 2. Advance the use of GPs for time-series astronomy
  - Statistically justified and astrophysically meaningful representation of transients.
  - Handle sparse, unevenly sampled data.
  - Go beyond interpolation and point estimates.





## Multivariate Normal $\mathbf{Y} \sim MVN(\mathbf{0}, \mathbf{\Sigma}_{n \times n})$

 $\boldsymbol{Y}$  is a vector of  $\boldsymbol{n}$  Gaussian random variables.

$$\begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix} = \mathbf{Y} \sim MVN(\boldsymbol{\mu}, \boldsymbol{\Sigma}_{n \times n}), \qquad \qquad \boldsymbol{\Sigma}_{n \times n} = \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \cdots & \boldsymbol{\Sigma}_{1n} \\ \vdots & \ddots & \vdots \\ \boldsymbol{\Sigma}_{n1} & \cdots & \boldsymbol{\Sigma}_{nn} \end{bmatrix}$$

where  $\boldsymbol{\mu} = (\mu_1, \cdots, \mu_n)$  and  $\boldsymbol{\Sigma}$  is a  $n \times n$  covariance matrix.



$$\Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
• Symmetric, periods
• Linear combined matrices are a matrices.

- Symmetric, positive semi-definite matrix.
- Linear combinations of covariance matrices are also valid covariance matrices.

# Gaussian Processes (GPs)

Extend multivariate Gaussian to 'infinite' dimensions.

- Mean function,  $\mu(t)$
- Covariance or kernel function,  $\kappa(t, t)$

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \end{bmatrix} = \boldsymbol{Y} \sim GP(\mu(t), \boldsymbol{\Sigma})$$

where 
$$\boldsymbol{\mu} = \mu(t_i)$$
 and  $\Sigma_{ij} = \boldsymbol{\kappa}(\boldsymbol{t_i}, \boldsymbol{t_j})$ , for  $i, j = 1, 2, ...$ 

Rather than specifying a fixed covariance matrix with fixed dimensions, compute covariances using the kernel function.





$$\kappa(\tau; \sigma, \ell) = \sigma^2 \exp\left\{-\frac{1}{2}\left(\frac{\tau}{\ell}\right)^2\right\}$$
$$\sigma, \ell > 0$$
$$\tau = |t_r - t_c|$$

- As distance (in time) increases *∧* the covariance decreases *√*
- Stationary time-series



#### Matern 3/2 Kernel



$$(\tau; \sigma, \ell) = \sigma^2 \left( 1 + \sqrt{3} \frac{\tau}{\ell} \right) \exp\left\{ -\sqrt{3} \frac{\tau}{\ell} \right\}$$
$$\sigma, \ell > 0$$
$$\tau = |t_r - t_c|$$

- Decays faster than SE kernel
- Converges on SE as order,
   i.e., 3/2, 5/2, etc, increases
- More jagged curves





$$\begin{aligned} \kappa(\tau; \sigma, \ell) &= \sigma^2 \exp\left\{-\frac{2}{\ell^2} \sin^2\left(\pi \frac{\tau}{T}\right)\right\} \\ \sigma, \ell, T &> 0 \\ \tau &= |t_r - t_c| \end{aligned}$$

- Additional hyperparameter
- Covariance might never decay to zero









#### Matern 3/2 Kernel

 $\kappa(\tau; \sigma, \ell) = \sigma^2 \left( 1 + \sqrt{3} \frac{\tau}{\ell} \right) \exp\left\{ -\sqrt{3} \frac{\tau}{\ell} \right\}$ 











![](_page_22_Figure_0.jpeg)

**Bayesian Hierarchical Model**  
Data Model 
$$Y \sim MVN(f, \hat{e}^2)$$
  
Process Model  $f \sim GP(0, K_{N \times N})$   
 $[K]_{rc} = \kappa(t_r, t_c | \theta)$   
 $= \kappa_1(\tau; \sigma_{SE}, \ell_{SE})$   
Squared Exponential  $+ \kappa_2(\tau; \sigma_{M32}, \ell_{M32})$   
Matern 3/2  $+ \kappa_3(\tau; \sigma_P, \ell_P, T)$   
Periodic Covariance  
Naternel

VerticeHyperparameter ModelStandardised flux  
densities
$$\sigma_{SE}, \sigma_{M32}, \sigma_P \sim N^+(0, 1)$$
 $\ell_{SE}, \ell_{M32}, \ell_P \sim \text{InverseGamma}\left(\alpha = 3, \beta = \frac{1}{2} \operatorname{range}(t)\right)$  $\ell_{SE}, \ell_{M32}, \ell_P \sim \operatorname{InverseGamma}\left(\alpha = 3, \beta = \frac{1}{2} \operatorname{range}(t)\right)$  $T \sim \operatorname{Uniform}\left[2 \times \min(\Delta t), \frac{1}{4} \operatorname{range}(t)\right]$ SE kernel to fit  
longer term trends  
than M32 kernel $\ell_{SE} > \ell_{M32} > 0$   
min $(\Delta t) < \ell$ .No more than half  
of total durationPeriods bounded by  
Nyquist rateObserve at least four  
cycles of any periodicity

![](_page_25_Picture_0.jpeg)

#### **Half-Normal Distribution**

![](_page_25_Figure_2.jpeg)

$$\sigma \sim N^+(0,1)$$

- Truncated and rescaled standard Normal distribution.
- Use median = **0.675** as a naive threshold.

![](_page_26_Figure_0.jpeg)

![](_page_27_Picture_0.jpeg)

- Implemented in Python<sup>1</sup> (v3.11) and PyMC<sup>2</sup> (v3.16.2)
  - Accessible to astronomers
  - Probabilistic programming framework
  - Well-maintained open-source software
- Repeated analyses in R<sup>3</sup> (v4.3.1) and Stan<sup>4</sup> (v2.34)
- Also considered: celerite2<sup>5</sup>, george<sup>6</sup>.
- 1. <u>https://www.python.org</u>
- 2. <u>https://www.pymc.io</u>
- 3. <u>https://cran.r-project.org/</u>
- 4. <u>https://mc-stan.org/</u>
- 5. <u>https://celerite2.readthedocs.io/en/latest/</u>
- 6. <u>https://george.readthedocs.io/en/latest/</u>

![](_page_28_Figure_0.jpeg)

#### Marginal GP implementation

![](_page_29_Picture_0.jpeg)

![](_page_29_Figure_1.jpeg)

![](_page_29_Figure_2.jpeg)

#### 

![](_page_30_Picture_0.jpeg)

N = 33, Duration = 215 days, Field = J1848G

![](_page_30_Figure_2.jpeg)

**Posterior Medians**  $\sigma_{\rm SE} = 0.39$  $\sigma_{M32} = 1.26$  $\sigma_{\rm P} = 0.50$  $\ell_{\rm SE} = 50.0$  $\ell_{M32} = 11.9$  $\ell_{\rm P} = 46.7$ T = 41.1

![](_page_31_Picture_0.jpeg)

![](_page_31_Figure_1.jpeg)

- Compute PSD of each posterior predictive sample
- Typical correlated (red) noise spectrum

### Additive Components (Posterior Predictive)

ICRAR

![](_page_32_Figure_1.jpeg)

![](_page_33_Picture_0.jpeg)

![](_page_33_Figure_1.jpeg)

![](_page_34_Picture_0.jpeg)

![](_page_34_Figure_1.jpeg)

![](_page_35_Picture_0.jpeg)

![](_page_35_Figure_1.jpeg)

## Explore the hyperparameter space

![](_page_36_Figure_1.jpeg)

![](_page_37_Picture_0.jpeg)

![](_page_37_Figure_1.jpeg)

![](_page_38_Picture_0.jpeg)

#### **Interpreting Amplitude as Transcience**

- Transience seems to manifest as large values in amplitude, σ.
- Previously identified transient candidates all seem to lie the upper right of this parameter space.

![](_page_38_Figure_4.jpeg)

![](_page_39_Picture_0.jpeg)

**Permutation Test** 

![](_page_39_Figure_2.jpeg)

- Destroys any auto-correlation structures
- "null" distribution of joint posterior means marginalised over other hyperparameters

![](_page_40_Figure_0.jpeg)

![](_page_41_Figure_0.jpeg)

![](_page_41_Figure_1.jpeg)

![](_page_41_Figure_2.jpeg)

![](_page_41_Figure_3.jpeg)

![](_page_41_Figure_4.jpeg)

![](_page_41_Figure_5.jpeg)

![](_page_41_Figure_6.jpeg)

![](_page_42_Figure_0.jpeg)

![](_page_43_Figure_0.jpeg)

![](_page_43_Figure_1.jpeg)

![](_page_43_Figure_2.jpeg)

![](_page_43_Figure_3.jpeg)

4U1543

EXO1846

GRS1915

GX339

H1743

J1848G

J1858

![](_page_43_Figure_4.jpeg)

![](_page_43_Figure_5.jpeg)

![](_page_43_Figure_6.jpeg)

![](_page_43_Figure_7.jpeg)

![](_page_44_Picture_0.jpeg)

#### Summary so far

- Developed models and code suitable for fitting univariate GPs to the light curves of a large radio survey, i.e., ThunderKAT.
- GP amplitude hyperparameters are a better descriptor of variability than more commonly used statistics.
- GPs can be used to perform inference as well as interpolation in time-domain astronomy.

GPs: not only a means to an end but an end to only means.

![](_page_45_Picture_0.jpeg)

#### Upcoming

|                                                                        | Astronomy                                                                                                    | Statistics                                                                                                       |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Modelling radio light<br>curves from ThunderKAT                        | Identifying transient and variable candidates in commensal radio surveys in the SKA era.                     | <ul> <li>Univariate Gaussian Processes</li> <li>Gaussian likelihood</li> <li>Sparse, unevenly sampled</li> </ul> |
| Guidance for GPs in time-<br>domain astronomy                          | Mean function, covariance kernel, and hyperprior choice for inference not just curve smoothing in astronomy. |                                                                                                                  |
| Modelling LSST light<br>curves                                         | Identifying transient candidates<br>in multi-wavelength light curves<br>across the optical band.             | <ul> <li>Multi-output Gaussian<br/>Process regression</li> <li>High noise and nuisance<br/>artefacts</li> </ul>  |
| Modelling light curves<br>from large X-ray surveys<br>(eROSITA, Swift) | Characterisation of black hole accretion through light curve modelling.                                      | <ul><li>Non-Gaussian likelihood</li><li>Non-Gaussian noise</li></ul>                                             |

![](_page_46_Picture_0.jpeg)

#### **Multi-band Optical Light Curves**

![](_page_46_Figure_2.jpeg)

- LSST light curves may have measurements in multiple bands.
- Expect each band to be correlated.
- Sparsity and sampling will differ between bands.
- Multi-output GPs with different noise model.

![](_page_47_Picture_0.jpeg)

#### Twinkle twinkle little star...

![](_page_47_Figure_2.jpeg)