

International Centre for Radio Astronomy Research Identifying Black Holes and Neutron Stars in Large Astronomical Surveys using Gaussian Processes

Shih Ching Fu

Co-supervisors:

Dr Arash Bahramian, Dr Aloke Phatak

Associate Supervisors:

Dr James Miller-Jones, Dr Suman Rakshit

Government of Western Australia Department of the Premier and Cabinet Office of Science

What physical characteristics can be used to distinguish these types of produce?

... what about now?

... and now?

Light Curves in Astronomy

Light curves are time-series describing the brightness of a celestial object over time.

Variability in brightness can reveal information about the processes at work within an object or help identify the category of event being observed.

But beware!

- Sparsity of observations
- Uneven sampling rates
- Varying noise levels

Bursts from Space: MeerKAT (https://www.zooniverse.org/projects/alex-andersson/bursts-from-space-meerkat)

Andersson, et al., 2023. MNRAS, in press.

Andersson, et al., 2023. MNRAS, in press.

TRAP Variability Metrics (Swinbank, et al., 2015)

- Flux density coefficient of variation, V_{ν}
- Statistic of flux density variability, $\eta_{\nu} \sim \chi^2_{N-1}$
- As $V_{\nu} \rightarrow 0$ and $\eta_{\nu} \rightarrow 0$, consistent with a stable source.

Variable sources are spread across the 2D parameter space

Characterising Light Curves

Oversimplified

- Fewer parameters
- Scales easily

CRA

High information loss

- Many parameters
- High discriminatory power

Overspecified

Overfitting

Gaussian Processes (GPs)

Multivariate (Normal) Gaussian

Y is a vector of *n* Gaussian random variables.

$$\begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix} = \mathbf{Y} \sim \text{MVN}(\boldsymbol{\mu}, \boldsymbol{\Sigma}_{n \times n})$$

where $\boldsymbol{\mu} = (\mu_1, \cdots, \mu_n)$ and $\boldsymbol{\Sigma}$ is a $n \times n$ covariance matrix.

Covariance Matrix

Each entry $\Sigma_{ij} = \text{Cov}(Y_i, Y_j)$ describes how much Y_i and Y_j co-vary or influence each other.

$$\boldsymbol{\Sigma}_{n \times n} = \begin{bmatrix} \Sigma_{11} & \cdots & \Sigma_{1n} \\ \vdots & \ddots & \vdots \\ \Sigma_{n1} & \cdots & \Sigma_{nn} \end{bmatrix} \qquad \Sigma_{ii} = \sigma_i^2$$

- Symmetric, positive semi-definite matrix.
- Linear combinations of covariance matrices are also valid covariance matrices.

Bivariate Gaussian $X \sim MVN(0, \Sigma_{2\times 2})$

 $\Sigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix} \qquad \Sigma = \begin{bmatrix} 1 & 0.8 \\ 0.8 & 1 \end{bmatrix}$ $\Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Gaussian Processes

Extend multivariate Gaussian to 'infinite' dimensions.

- Mean function, μ ()
- Covariance or kernel function, k()

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \end{bmatrix} = \boldsymbol{Y} \sim GP(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

where
$$\boldsymbol{\mu} = \mu(t_i)$$
 and $\boldsymbol{\Sigma} = k(t_i, t_j)$, for $i, j = 1, 2, ...$

Rather than specifying a fixed covariance matrix with fixed dimensions, compute covariances using the kernel function.

$$\Sigma_{ij} = \operatorname{Cov}(Y_i, Y_j) = k(t_i, t_j) \quad i, j = 1, \dots$$

There are many kernel functions to choose from!

- Squared Exponential (Radial Basis), (Absolute) Exponential, Matern-3/2, Matern-5/2, Rational Quadratic, Cosine, Sine Squared Exponential (Periodic), Stochastic Harmonic Oscillator, etc.
- or combinations thereof

Each has its own functional form and parameterisation.

Stationary time-series

 \bullet

CRA

NB: Squared Exponential kernel is not periodic!

Research Proposal

- 1. Black Holes are eluding us!
 - Estimated population is $> 10^5$ but only found ≈ 100 .
 - Need to find more to get better understanding.
- 2. Emerging large astronomical surveys
 - Need techniques to analyse these new large datasets.
- 3. Gaussian Processes are showing promise in astronomy
 - Handles sparse, unevenly sampled data.
 - Flexible
 - Lends itself to Bayesian inference.

- 1. Develop a framework using Gaussian Processes for characterising light curves.
- 2. Apply this framework to identify black hole and neutron star candidates in large astronomical surveys, e.g., LSST, SKA.
- 3. Build software tools that will be adopted by astronomers.

Work to Date

Benchmarking: Mira

Data source: AAVSO (American Association of Variable Star Observers)

Image credit: ESO/Davide De Martin

$$\mu(t)=\bar{y}$$

Mean function

Periodic kernel function

 $\eta \sim \text{HalfNormal}(8)$

Hyperpriors

Mira: PSD

ICRAR

ThunderKAT Survey

Likelihood + Noise

$$y(t) \sim N(f(t), \sigma^2)$$

GP Prior

$$f(t) \sim GP_1(\bar{y}, k_1(\tau)) + GP_2(\bar{y}, k_2(\tau))$$
Quasiperiodic Noise

Kernel

$$k_{1}(\tau) = \eta_{1}^{2} \left[1 + \sqrt{5} \left(\frac{\tau}{\ell_{1}} \right) + \frac{5}{3} \left(\frac{\tau}{\ell_{1}} \right)^{2} \right] \exp \left\{ -\sqrt{5} \left(\frac{\tau}{\ell_{1}} \right) \right\} \times \left[\exp \left\{ -\frac{1}{2} \left[\frac{\sin\left(\pi \frac{\tau}{T}\right)}{\ell_{p}} \right]^{2} \right\} \right]_{\text{Natern 5/2}}$$

$$k_{2}(\tau) = \eta_{2}^{2} \left[1 + \sqrt{3} \left(\frac{\tau}{\ell_{2}} \right) \right] \exp \left\{ -\sqrt{3} \left(\frac{\tau}{\ell_{2}} \right) \right\}$$

$$Matern 3/2$$

Priors

- $\eta_1 \sim \text{HalfNormal}(8)$
- $\ell_1 \sim \text{Gamma}(10, 0.1)$
- $T \sim \text{LogNormal}(3, 0.5)$
- $\ell_p \sim \text{Gamma}(10, 0.1)$
- $\eta_2 \sim \text{HalfNormal}(0.0002)$
- $\ell_2 \sim \text{Gamma}(2, 4)$
- $\sigma \sim \text{HalfNormal}(0,1)$

Posterior Predictive Samples

Planned Work

Project	Astronomy	Statistics		
Modelling radio light curves from ThunderKAT	Identifying black hole candidates in commensal radio surveys in the SKA era	 Univariate Gaussian Processes Gaussian likelihood Sparse, unevenly sampled 		
Modelling LSST light curves	Identifying black hole candidates in multi-wavelength light curves across the optical band	 Multivariate Gaussian Processes High noise and nuisance artefacts 		
Modelling light curves from large X-ray surveys (eROSITA, Swift)	Characterisation of black hole accretion through light curve modelling	Non-Gaussian likelihoodNon-Gaussian noise		
Tools for GPs in Astronomy	 Software (Python) Guidance for using GPs, e.g., keeping 	ernels, hyperparameters, etc.		

	1		
m	e	In	e

		Months since 22 November 2022											
Activity		3	6	9	12	15	18	21	24	27	30	33	36
Literature review													
Learning software packages, e.g., PyMC													
Analysis of ThunderKAT survey data													
Papers	Ι												
	II												
	III												
	IV												
Thesis preparation	Introduction & Background												
	Methodology												
	Paper I												
	Paper II												
	Paper III												
	Paper IV												
	Discussion & Conclusions												

Chosen to use Python¹ and PyMC² for this work.

- Accessible to astronomers
- Probabilistic programming framework
- Well-maintained open-source software

Considered: R³, Stan⁴, celerite2⁵, george⁶.

- 1. <u>https://www.python.org</u>
- 2. <u>https://www.pymc.io</u>
- 3. <u>https://cran.r-project.org/</u>
- 4. https://mc-stan.org/
- 5. <u>https://celerite2.readthedocs.io/en/latest/</u>
- 6. <u>https://george.readthedocs.io/en/latest/</u>

Posterior Predictive PSD

Modelling Workflow

