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What physical characteristics can be used to 
distinguish these types of produce?
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… what about now?
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… and now?
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Light Curves in Astronomy

Light curves are time-series describing the brightness of a celestial 

object over time.

Variability in brightness can reveal information about the processes at 

work within an object or help identify the category of event being 

observed.

But beware!

• Sparsity of observations

• Uneven sampling rates

• Varying noise levels
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Hunting for ‘Variables’

Bursts from Space: MeerKAT (https://www.zooniverse.org/projects/alex-andersson/bursts-from-space-meerkat)

https://www.zooniverse.org/projects/alex-andersson/bursts-from-space-meerkat
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Andersson, et al., 2023. MNRAS, in press.
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TRAP Variability Metrics

(Swinbank, et al., 2015)

• Flux density coefficient of 
variation, 𝑉𝜈

• Statistic of flux density 
variability, 𝜂𝜈 ∼ 𝜒𝑁−1

2

• As 𝑉𝜈 → 0 and 𝜂𝜈 → 0, 
consistent with a stable source.

Andersson, et al., 2023. MNRAS, in press.

Variable sources are spread across 
the 2D parameter space
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Characterising Light Curves

• Many parameters

• High discriminatory power

• Overfitting

• Fewer parameters

• Scales easily

• High information loss

Oversimplified Overspecified



10Analytical Techniques for Large Astronomical Surveys 10

Gaussian Processes
(GPs)
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Multivariate (Normal) Gaussian

𝒀 is a vector of 𝑛 Gaussian random variables.

𝑌1
⋮
𝑌𝑛

= 𝒀 ~MVN(𝝁, 𝜮𝑛×𝑛)

where 𝝁 = (𝜇1, ⋯ , 𝜇𝑛) and 𝜮 is a 𝑛 × 𝑛 covariance matrix.
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Covariance Matrix

Each entry Σ𝑖𝑗 = Cov(𝑌𝑖 , 𝑌𝑗) describes how much 𝑌𝑖 and 𝑌𝑗 co-vary or 

influence each other.

𝜮𝑛×𝑛 =
Σ11 ⋯ Σ1𝑛
⋮ ⋱ ⋮

Σ𝑛1 ⋯ Σ𝑛𝑛

Σ𝑖𝑖 = 𝜎𝑖
2

• Symmetric, positive semi-definite matrix.

• Linear combinations of covariance matrices are also valid covariance 

matrices.
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Bivariate Gaussian 𝑿 ~MVN(𝟎, 𝚺2×2)

Σ =
1 0
0 1

Σ =
1 0.5
0.5 1

Σ =
1 0.8
0.8 1

𝑋2

𝑋1
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Gaussian Processes

Extend multivariate Gaussian to ‘infinite’ dimensions.

• Mean function, 𝜇()

• Covariance or kernel function, 𝑘()

𝑌1
𝑌2
⋮

= 𝒀 ~ 𝐺𝑃(𝝁, 𝜮)

where 𝝁 = 𝜇(𝑡𝑖) and 𝜮 = 𝑘(𝑡𝑖 , 𝑡𝑗), for 𝑖, 𝑗 = 1, 2, …

Rather than specifying a fixed covariance matrix with fixed dimensions, 
compute covariances using the kernel function.
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Kernel Functions

Σ𝑖𝑗 = Cov 𝑌𝑖 , 𝑌𝑗 = 𝑘 𝑡𝑖 , 𝑡𝑗 𝑖, 𝑗 = 1,…

There are many kernel functions to choose from!

• Squared Exponential (Radial Basis), (Absolute) Exponential, Matern-

3/2, Matern-5/2, Rational Quadratic, Cosine, Sine Squared 

Exponential (Periodic), Stochastic Harmonic Oscillator, etc.

• or combinations thereof

Each has its own functional form and parameterisation.
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Squared Exponential Kernel

𝑘 𝜏; 𝜂, ℓ = 𝜂2exp −
1

2

𝜏

ℓ

2

𝜂, ℓ > 0

𝜏 = 𝑡𝑖 − 𝑡𝑗

• As distance (in time) increases 

↗, the covariance decreases ↘.

• Stationary time-series



17Analytical Techniques for Large Astronomical Surveys 17

Amplitude 𝜂, Lengthscale ℓ

NB: Squared Exponential kernel is not periodic!

𝑘 𝜏; 𝜂, ℓ = 𝜂2exp −
1

2

𝜏

ℓ

2
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Research Proposal
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Motivations

1. Black Holes are eluding us!
• Estimated population is > 105 but only found ≈ 100.

• Need to find more to get better understanding.

2. Emerging large astronomical surveys
• Need techniques to analyse these new large datasets.

3. Gaussian Processes are showing promise in astronomy
• Handles sparse, unevenly sampled data.

• Flexible

• Lends itself to Bayesian inference.
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Objectives

1. Develop a framework using Gaussian Processes for 

characterising light curves.

2. Apply this framework to identify black hole and 

neutron star candidates in large astronomical 

surveys, e.g., LSST, SKA.

3. Build software tools that will be adopted by 

astronomers.
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Work to Date
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Modelling Workflow

Data

Characterisation 
of Light Curve

Power Spectral 
Density (PSD)

Likelihood

GP Prior

GP 
Posterior

Prediction

Hyperparameter 
priors

Kernel Function
Mean 

Function

Hyperparameter 
posteriors

e.g., flux, flux 
density, stellar 
magnitudes.

e.g., Gaussian, Poisson,
Negative Binomial.

𝜇(𝑡) 𝑘(𝜏; 𝜽)

𝑝(𝜽)

𝑝 𝜽 𝒚

𝑝 𝒚∗ 𝒚

𝑝 𝜃 𝑦 =
𝑝 𝑦 𝜃 × 𝑝(𝜃)

𝑝(𝑦)
posterior

likelihood prior

marginal likelihood

Bayes’ Theorem
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Benchmarking: Mira

Data source: AAVSO (American Association of Variable Star Observers)

Image credit: ESO/Davide De Martin
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Mira: Model 𝜇 𝑡 = ത𝑦

Mean function

𝑘 𝜏 = 𝜂2 exp −
1

2

sin 𝜋
𝜏
𝑇

ℓ

2

Periodic kernel function

𝑇 ~ LogNormal(6, 0.25)𝜂 ~ HalfNormal(8) ℓ ~ Gamma(10, 5)

Hyperpriors
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Mira: Posterior Predictive
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Mira: PSD
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ThunderKAT Survey
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Model
Likelihood + Noise

𝑦 𝑡 ~ 𝑁 𝑓 𝑡 , 𝜎2

GP Prior
𝑓 𝑡 ~ 𝐺𝑃1 ത𝑦, 𝑘1(𝜏) + 𝐺𝑃2 ത𝑦, 𝑘2(𝜏)

Kernel

𝑘1 𝜏 = 𝜂1
2 1 + 5

𝜏

ℓ1
+
5

3

𝜏

ℓ1

2

exp − 5
𝜏

ℓ1
× exp −

1

2

sin 𝜋
𝜏
𝑇

ℓ𝑝

2

𝑘2 𝜏 = 𝜂2
2 1 + 3

𝜏

ℓ2
exp − 3

𝜏

ℓ2

Quasiperiodic Noise

Matern 5/2 Periodic

Matern 3/2
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Hyperparameter Inference

𝜂1

ℓ1

𝑇

ℓ𝑝

𝜂2

ℓ2

σ

𝜂1 ℓ1 𝑇 ℓ𝑝 𝜂2 ℓ2 σ

Priors

𝜂1 ~ HalfNormal(8)

ℓ1 ~ Gamma(10, 0.1)

𝑇 ~ LogNormal(3, 0.5)

ℓ𝑝 ~ Gamma(10, 0.1)

𝜂2 ~ HalfNormal(0.0002)

ℓ2 ~ Gamma 2, 4

σ ~ HalfNormal(0,1)

Posteriors
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Posterior Predictive Samples
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Planned Work
Project Astronomy Statistics

Modelling radio light 
curves from ThunderKAT

Identifying black hole candidates 
in commensal radio surveys in 
the SKA era

• Univariate Gaussian Processes
• Gaussian likelihood
• Sparse, unevenly sampled

Modelling LSST light 
curves

Identifying black hole candidates 
in multi-wavelength light curves 
across the optical band

• Multivariate Gaussian 
Processes

• High noise and nuisance 
artefacts

Modelling light curves 
from large X-ray surveys 
(eROSITA, Swift)

Characterisation of black hole 
accretion through light curve 
modelling

• Non-Gaussian likelihood
• Non-Gaussian noise

Tools for GPs in 
Astronomy

• Software (Python)
• Guidance for using GPs, e.g., kernels, hyperparameters, etc.
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Timeline
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Questions & Responses
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Tools

Chosen to use Python1 and PyMC2 for this work.

• Accessible to astronomers

• Probabilistic programming framework

• Well-maintained open-source software

Considered: R3, Stan4, celerite25, george6.

https://www.python.org/
https://www.pymc.io/
https://cran.r-project.org/
https://mc-stan.org/
https://celerite2.readthedocs.io/en/latest/
https://george.readthedocs.io/en/latest/
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Posterior Predictive PSD
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Lomb-Scargle Periodogram
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Modelling Workflow

Data

Characterisation 
of Light Curve

Power Spectral 
Density (PSD)

Likelihood

GP Prior

GP 
Posterior

Prediction

Hyperparameter 
priors

Kernel Function
Mean 

Function

Hyperparameter 
posteriors

Stellar 
Magnitudes

Gaussian

𝜇(𝑡) = 0 Periodic

𝜂 ~ HalfNormal(. )

ℓ ~ Gamma(. )

𝑇 ~ HalfNormal(. )

𝜼, ℓ, 𝑻
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