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A transient is an astrophysical phenomenon whose brightness changes 
over observable time. 

• Supernovae 
• Variable stars, e.g., pulsating,
• eclipsing binaries.
• Gamma-ray bursts (GRBs)
• Fast radio bursts (FRBs)
• Transiting planets
• Active galactic nuclei (AGN)
• Accreting blackholes
• and lots more…
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Twinkle twinkle…

Artist’s impression of the Cygnus X-1 system. Credit: ICRAR
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Light Curves

Light curves are time series describing the brightness of a source over time.

• The shape of a light curve can reveal the type of object or event. 

• Variability in brightness can reveal information about the processes 

underlying the observed phenomenon.
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Heterogeneous Data

• Different cadences

• Sparse observations

• Uneven sampling rates

• Varying noise levels
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Characterising Light Curves

• Many parameters

• High discriminatory power

• Overfitting

• Fewer parameters

• Scales easily

• High information loss

Oversimplified Overspecified

Model light curves as a Gaussian Process (GP)
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Objectives

1. Characterisation of light curves based on Gaussian 

process (GP) regression.

• Statistically justified and astrophysically meaningful.

2. Identify variable and transient candidates in large 

astronomical surveys, e.g., ThunderKAT, LSST.

3. Guide the astronomical community towards more 

sophisticated application of GPs to time-series 

astronomy.
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Multivariate Normal 𝐘 ~ MVN(𝟎, 𝚺𝑛×𝑛)

Σ =
1 0
0 1

Σ =
1 0.8

0.8 1

𝒀 is a vector of 𝑛 Gaussian random variables.

𝑌1

⋮
𝑌𝑛

= 𝒀 ~ 𝑀𝑉𝑁 𝝁, 𝜮𝑛×𝑛 ,     𝜮𝑛×𝑛 =
Σ11 ⋯ Σ1𝑛

⋮ ⋱ ⋮
Σ𝑛1 ⋯ Σ𝑛𝑛

where 𝝁 = (𝜇1, ⋯ , 𝜇𝑛) and 𝜮 is a 𝑛 × 𝑛 covariance matrix.

• Symmetric, positive semi-definite matrix.

• Linear combinations of covariance 
matrices are also valid covariance 
matrices.



9 9

Gaussian Processes

Extend multivariate Gaussian to ‘infinite’ dimensions.

• Mean function, 𝜇(𝑡)

• Covariance or kernel function, 𝜿(𝒕, 𝒕)

𝑌1

𝑌2

⋮
= 𝒀 ~ 𝐺𝑃(𝜇(𝑡), 𝜮)

where 𝝁 = 𝜇(𝑡𝑖) and 𝛴𝑖𝑗 = 𝜿(𝒕𝒊, 𝒕𝒋), for 𝑖, 𝑗 = 1, 2, …

Rather than specifying a fixed covariance matrix with fixed dimensions, 
compute covariances using the kernel function.
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𝜅 𝜏; 𝜂, ℓ = 𝜂 exp −
1

2

𝜏

ℓ

2

𝜏 = 𝑡𝑟 − 𝑡𝑐 ;  𝜂, ℓ, 𝑇 > 0

𝜅 𝜏; 𝜂, ℓ = 𝜂 1 + 3
𝜏

ℓ
exp − 3

𝜏

ℓ

𝜅 𝜏; 𝜂, ℓ, 𝑇 = 𝜂 exp −
2

ℓ2
sin2 𝜋

𝜏

𝑇

Squared Exponential

Matern 3/2

Periodic
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Squared Exponential Kernel 𝜅 𝜏; 𝜂, ℓ = 𝜂 exp −
1

2ℓ2
𝜏2
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Matern 3/2 Kernel
𝜅 𝜏; 𝜂, ℓ = 𝜂 1 + 3

𝜏

ℓ
exp − 3

𝜏

ℓ
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Periodic Kernel 𝜅 𝜏; 𝜂, ℓ = 𝜂 exp −
2

ℓ2
sin2 𝜋

𝜏

𝑇
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ThunderKAT Survey

• Image-domain transients survey using MeerKAT

• Field of view of ≈ 1 square degree

• 6,394 radio light curves over 10 fields

• Flux density measurements

• Standard errors
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MeerKAT Radio Telescope (Credit: SARAO)
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Variability Statistics: 𝜂𝜈 and 𝑉𝜈 

𝜂𝜈 =
1

𝑁
෍

Obs. − Wt. Mean

Std. Error

2

∼ 𝜒𝑁−1
2

𝑉𝜈 =
Standard Deviation

Mean
 

As 𝜂𝜈 → ∞ and 𝑉𝜈 → ∞

Source is likely transient

(Data courtesy of Andersson, 2023)

𝜂𝜈 = 2.91
𝑉𝜈 = 0.12
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Modelling Workflow

Data

Power Spectral 
Density (PSD)

Characterisation 
of Light Curve

Likelihood

GP Prior

GP 
Posterior

Hyperparameter 
posteriors

Hyperparameter 
priors

Kernel Function
Mean 

Function

Posterior 
Predictive

Flux 
Densities

Gaussian

𝜇(𝑡) = 0
SE
Matern 3/2
Periodic

𝜂 ~ HalfNormal()

ℓ ~ InvGamma()

𝑇 ~ Uniform()

𝜽 = 𝜼, ℓ, 𝑻
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ThunderKAT GP Model

= 𝜅1 𝜏; 𝜂𝑆𝐸 , ℓ𝑆𝐸 + 𝜅2 𝜏; 𝜂𝑀32, ℓ𝑀32 + 𝜅3 𝜏; 𝜂𝑃, ℓ𝑃, 𝑇
Periodic

Y ~ MVN 𝑓, ො𝒆2𝑰

𝑓 ~ GP 𝟎, 𝑲𝑁×𝑁

𝑲𝑟𝑐 = 𝜅 𝑡𝑟 , 𝑡𝑐 𝜽

𝑟, 𝑐 = 1, … , 𝑁.

Matern 3/2Squared Exponential

Gaussian White Noise

GP Prior

Covariance
Kernel

Latent 
Function 𝜽 = 𝜂𝑆𝐸 , ℓ𝑆𝐸 , 𝜂𝑀32, ℓ𝑀32, 𝜂𝑃, ℓ𝑃, 𝑇
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Hyperparameter Priors

𝜂𝑆𝐸 , 𝜂𝑀32, 𝜂𝑃 ~ 𝑁+ 0, 1

ℓ𝑆𝐸 , ℓ𝑀32, ℓ𝑃 ~ InverseGamma 𝛼 = 3, 𝛽 =
1

2
range(𝑡)

𝑇 ~ Uniform 2 × min(Δ𝑡),
1

4
range(𝑡)

ℓ𝑀32 < ℓ𝑆𝐸

min ∆𝑡 < ℓ.

Constrain length scale to be 
at least as wide as the 

narrowest gap in light curve

Bias SE kernel towards 
fitting longer term 

smooth trends

Observe at least four 
cycles of any periodicity

Fitting to standardised 
flux densities

No more than half 
of total duration
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𝜂𝑆𝐸 = 0.39
𝜼𝑴𝟑𝟐 = 𝟏. 𝟐𝟔
𝜂𝑃 = 0.50
ℓ𝑆𝐸 = 50.0
ℓ𝑴𝟑𝟐 = 𝟏𝟏. 𝟗
ℓ𝑃 = 46.7
𝑇 = 41.1

𝜂𝜈 = 2.91
𝑉𝜈 = 0.12
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GP Fitting Example
N = 33, Duration = 215 days, Field = J1848G
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Posterior Predictive Samples

𝜂𝑆𝐸 = 0.39
𝜼𝑴𝟑𝟐 = 𝟏. 𝟐𝟔
𝜂𝑃 = 0.50
ℓ𝑆𝐸 = 50.0
ℓ𝑴𝟑𝟐 = 𝟏𝟏. 𝟗
ℓ𝑃 = 46.7
𝑇 = 41.1

𝜂𝜈 = 2.91
𝑉𝜈 = 0.12

N = 33, Duration = 215 days, Field = J1848G
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Power Spectral Density

• Matern term dominates

• Very weak periodic term
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Large Amplitude  Transience

• Brightness is encoded 

in the amplitude, 𝜂.

• Transience is 

characterised by large 

changes in brightness.
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Comparison with 𝑉𝜈 vs 𝜂𝜈

(Andersson et al. 2023)



2525

Comparison with 𝑉𝜈 vs 𝜂𝜈

(Fu et al. in prep.)
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Tools

• Implemented in Python1 (v3.10) and PyMC2 (v3.5.2)

• Accessible to astronomers

• Probabilistic programming framework

• Well-maintained open-source software

• Repeated analyses in R3 (v4.3.1) and Stan4 (v2.34) 

• Also considered: celerite25, george6.

https://www.python.org/
https://www.pymc.io/
https://cran.r-project.org/
https://mc-stan.org/
https://celerite2.readthedocs.io/en/latest/
https://george.readthedocs.io/en/latest/
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Outcomes So Far

• New metric for describing the “transience” of light curves.

• Applied this to ThunderKAT to get candidate transients.

• Implemented these models in R/Stan and Python/PyMC for 

sharing with user community.

• Conducted sensitivity experiments: increasing sparsity, 

regular vs irregular sampling, permutation tests.

• Manuscript is almost complete.
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Multi-band Optical Light Curves

• LSST light curves may 

have measurements in 

multiple bands.

• Expect each band to be 

correlated.

• Sparsity and sampling 

will differ between 

bands.

• Multivariate GPs with 

different noise model.
(Credit: S. Sett, 2024)
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Summary

• Developed models and code suitable for fitting univariate GPs to the 

light curves of a large radio survey, i.e., ThunderKAT.

• GP amplitude hyperparameters are a better descriptor of variability 

than more commonly used statistics.

• Gaussian processes should be used to perform inference as well as 

interpolation in time-domain astronomy.

• Extend into multi-band multi-variate GPs for optical light curves and 

non-Gaussian likelihoods for X-ray light curves.

GPs: not only a means to an end but an end to only means.
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